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ABSTRACT

Motivation: Standard algorithms for pairwise protein sequence align-

ment make the simplifying assumption that amino acid substitutions

at neighboring sites are uncorrelated. This assumption allows imple-

mentation of fast algorithms for pairwise sequence alignment, but

it ignores information that could conceivably increase the power of

remote homolog detection. We examine the validity of this assump-

tion by constructing extended substitution matrices that encapsulate

the observed correlations between neighboring sites, by developing an

efficient and rigorous algorithm for pairwise protein sequence align-

ment that incorporates these local substitution correlations and by

assessing the ability of this algorithm to detect remote homologies.

Results: Our analysis indicates that local correlations between sub-

stitutions are not strong on the average. Furthermore, incorporating

local substitution correlations into pairwise alignment did not lead to

a statistically significant improvement in remote homology detection.

Therefore, the standard assumption that individual residueswithin pro-

tein sequences evolve independently of neighboring positions appears

to be an efficient and appropriate approximation.

Availability: Sequence data, software and matrices are freely avail-

able from http://compbio.berkeley.edu/

Contact: gec@compbio.berkeley.edu

Supplementary information: Supplementary data for this paper is

available at Bioinformatics online.

1 INTRODUCTION

Among the most commonly used tools in computational biology

are the pairwise protein sequence alignment methods, such as

SSEARCH, FASTA and BLAST (Smith and Waterman, 1981;

Pearson and Lipman, 1988; Altschul et al., 1990; Durbin et al.,

1998). These algorithms are elegant, efficient and effective methods

of detecting similarity between closely related protein sequences.

However, the ability of fast pairwise methods to detect homology

deteriorates as the divergence between the sequences increases. Past

the ‘twilight zone’ (20–30%pairwise sequence identity), only a small

fraction of related proteins can be found (Sander and Schneider,
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1991; Doolittle, 1992; Brenner et al., 1998; Green and Brenner,

2002). Therefore, in order to make better use of the vast and

increasing amount of available biological sequence data, there is

an immediate need for more sensitive, fast database search methods.

For the sake of computational efficacy, current pairwise align-

ment methods make several simplifying assumptions. First, amino

acid substitutions are assumed to be homogeneous between protein

families. The most commonly used substitution matrices [BLOSUM

(Henikoff and Henikoff, 1992) and PAM (Dayhoff et al., 1978)] are

thus generic models of protein sequence evolution across all pro-

tein sequence families at various evolutionary distances. Second,

substitutions at a given site are assumed to be uncorrelated with

those on neighboring sites, i.e. the likelihood of substituting an

amino acid X for amino acid Y is assumed to be independent of

the sequence context of X. It is known that both of these simplify-

ing assumptions introduce errors into homology searching. Relaxing

the assumption of homogeneous substitution across protein families

can significantly improve the performance of pairwise alignment

methods (Yu et al., 2003). Furthermore, alignment methods that

remove the assumption of homogeneity among different positions in

the sequence, and instead model the heterogeneity of the given pro-

tein family, have been found to be dramatically superior for remote

homology detection (Park et al., 1998, R. E. Green and S. E. Brenner,

Unpublished data). Unfortunately, these profile methods [e.g. PSI-

BLAST (Altschul et al., 1997), HMMER (http://hmmer.wustl.edu/)

(Eddy, 2001), SAM (Karplus et al., 1998)] are not tractable for

all query sequences. They require the presence, identification and

correct alignment of homologous sequences in order to generate a

model of the query sequence’s family. Therefore, the fast and univer-

sally applicable pairwise methods remain widely used for database

searching, despite their lower sensitivity.

One proposed strategy for increasing the sensitivity of pairwise

alignment is to use a more sophisticated scoring function for amino

acid substitutions, namely one that is sensitive to the sequence con-

text in which the residue resides. For example, amino acid sequences

are correlated with secondary structural features, such as helixes and

loops, which can directly lead to structure-dependent substitution

patterns (Thorne et al., 1996; Topham et al., 1997; Goldman et al.,

1998). Similarly, one might intuitively expect structurally and func-

tionally important residues, such as cysteines andprolines, to bemore

or less conserved depending on their local sequence environment and

the prevalence of particular motifs.
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The first large-scale exploration of the effect of sequence context

on amino acid evolution was performed by Gonnet et al. (1994), who

examined the frequencies of dipeptide substitutions, and compared

them with the dipeptide substitution frequencies expected assuming

no sequence dependent correlations. Despite the fact that nearly half

of the elements of the 400 × 400 observed dipeptide matrix were

vacant (owing to the sparsity of data) several interesting patterns

were evident. The chief trend was that amino acids are generally

more likely to be conserved if they are adjacent to positions that are

also conserved.

More recently Jung and Lee (2000) have taken advantage of the

large increase in available data to reexamine trends in dipeptide evol-

ution. They used the observed patterns of substitution within a large

set of structure-based alignments to generate dipeptide substitution

matrices. Furthermore, they developed an extension to the standard

Smith–Waterman alignment algorithm that incorporates a term from

these dipeptide matrices. By using sequence and structure context

information, they show some improvement in homolog detection in

a limited test set. However, their method could not be extensively

tested or practically utilized because an efficient dynamic program-

ming method for finding the optimal alignment was not known to the

authors. Instead, they adopted a heuristic search that is not guaranteed

to find optimal alignments.

In this study, we have extended the work described above by

examining the strength of local, dipeptide substitution correlations

using the massive amount of alignment data within the BLOCKS

database. We have also extended the standard Smith–Waterman

algorithm to include local dipeptide correlation information over a

user-defined distance. Similar to Smith–Waterman, this new polyno-

mial time algorithm, doublet, finds the optimal alignment under

the scoring scheme described. Using a standard remote homolog

detection evaluation strategy, we have tested doublet against the

Smith–Waterman algorithm to measure the impact of including this

extra information. Perhaps surprisingly, we found that incorporating

doublet substitution correlations leads to a statistically insignificant

difference in homology detection.

2 METHODS

2.1 Quantifying substitution correlations

Consider two aligned, ungapped sequences, x = x1, x2, · · · , xn and y =

y1, y2, · · · , yn, both of length n, where each element represents one of the

20 canonical amino acids. We wish to use the patterns of conservation and

variation between these sequences to estimate the log odds that the sequences

are homologous (i.e. that both sequences have descended from a common

ancestor).

S = log
q(x; y)

p(x)p(y)
= log

q(x1, x2, · · · , xn; y1, y2, · · · , yn)

p(x1, x2, · · · , xn)p(y1, y2, · · · , yn)
. (1)

Here, p(x) is the background probability of the given amino acid segment and

q(x; y) is the target probability of observing the pair of segments in diverged

homologous sequences.

Except for very short segments, the background and target probability

distributions are large and cannot be directly measured. Therefore, Equa-

tion (1) is typically simplified by assuming that substitutions probabilities

are homogeneous (independent of the location in the fragment) and that both

the substitutions and the sequences themselves are uncorrelated from one

position to the next. Consequentially, the total similarity score is now a sum

of independent parts,

S ≈

∑

k

s(xk ; yk), s(i; j) = log
q(i; j)

p(i)p(j)
(2)

The log odds of residue replacement, s(i, j), is an element of a standard

singlet substitution matrix, of the type widely used in pairwise sequence

alignment (Altschul, 1991).

This approximation of the full similarity by a sum of singlet substitution

scores requires that we neglect all intersite correlations. We can perform a

more controlled approximation by noting that a homogeneous multivariate

probability can be expanded into a product of single component distributions,

pairwise correlations, triplets correlations and so on.

P(z1, z2, · · · , zn) =

∏

i

P(zi) ×

∏

i<j

P(zi , zj )

P (zi)P (zj )

×

∏

i<j<k

P(zi , zj , zk)P (zi)P (zk)P (zj )

P (zi , zj )P (zi , zk)P (zj , zk)
· · · (3)

If we assume that substitution probabilities are independent of the loca-

tion within the fragment, then we can apply this expansion to the segment

homology score [Equation (1)].

S =

n
∑

k=1

s(xk ; yk) +

L
∑

l=1

n−L
∑

k=1

dl(xk , xk+l ; yk , yk+l) + · · · (4)

The first term of this expansion represents single residue replacements, as in

Equation (2). The next term defines the doublet substitution scores,

dl(i, i
′; j , j ′) = log

ql(i, i
′; j , j ′)

pl(i, i′)pl(j , j ′)
− s(i; j) − s(i′; j ′). (5)

Here, i and i′ are residues separated by a distance l along one amino acid

chain, whereas j and j ′ are the corresponding aligned residues on the putative

homologous sequence; ql(i, i
′; j , j ′) is the target probability of observing this

aligned quartet, and pl(i, i
′) is the background probability of this residue pair

in protein sequences. These doublet scores represent the additional similarity

owing to correlations between substitutions.

By truncating the expansion of the full similarity score at doublet terms

[Equation (4)], we are assuming that triplet and higher order correlations

between substitutions are relatively uninformative. For reasons discussed

below, this is probably a reasonable approximation. Furthermore, the most

important intersite correlations are between residues neighboring on the chain

(Fig. 3). Therefore, we can restrict the maximum distance over which doublet

interactions are scored without serious error.

The average similarity score is the interhomolog mutual information I

(Cover and Thomas, 1991), a measure of the interequence correlations. A

high mutual information value indicates strong correlation, whereas a mutual

information value of zero indicates uncorrelated variables. Mutual informa-

tion has various advantages as a correlation measure: it is firmly grounded

in information theory, it is additive for independent contributions and it has

consistent, intuitive units (bits).

I (x; y) =

∑

q(x, y) log2
q(x, y)

p(x)p(y)
. (6)

The average singlet score is the interhomologmutual information per residue,

under the assumption that replacements are uncorrelated. This is frequently

reported as the ‘relative entropy’ of the substitution matrix. The aver-

age doublet score is the first order correction to the intersequence mutual

information owing to intersite correlations. Consequentially, we may eval-

uate the comparative importance of singlet and doublet contributions to the

sequence similarity by examining the average contributions of these different

components to the full interhomolog mutual information.

The preceding analysis applies to contiguously aligned sequence segments.

However, in addition to substitutions, protein sequences are modified by the

insertion and deletion of residues. Since it is not obvious how to capture

the existence of indels in doublet scores, in the following discussion we

assume that dipeptide correlations do not extend across gaps, and we adopt

the simple and standard affine model of gap lengths. This approximation

should have little impact, since aligned detectably homologous sequences

tend to have relatively few indels, particulary in regions that are significantly

similar.
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Fig. 1. A comparison of Smith–Waterman and doublet sequence align-

ment. (a) A Smith–Waterman match table, with the optimal alignment

highlighted. The value of each cell is the maximum of (1) The singlet match

score (this is the start of an alignment), (2) The singlet score plus the match

score from the previous cell along the diagonal (this extends an aligned region)

or (3) the singlet score plus the optimal score from a gap score table (the pre-

vious residue was not aligned) (b) For doublet, multiple match tables are

used [Equations (9–11)]. The number of match tables is one plus the distance

over which dipeptide correlation information is considered (in this example,

two). Again, the optimal alignment is highlighted. The top table corresponds

to the starts of aligned regions, themiddle table corresponds to aligned regions

of at least two consecutive residues and the bottom table corresponds aligned

regions of at least three consecutive residues. The alignment path through

these tables falls through to lower tables in regions of consecutive aligned

residues and begins again in the top table following gaps. To extend dipeptide

context scoring over longer distances requires additional match tables.

2.2 Alignment algorithm

We have extended the standard Smith–Waterman optimal local sequence

alignment algorithm (Smith andWaterman, 1981) to incorporate doublet sub-

stitution scores (Fig. 1). The time complexity of Smith–Waterman isO(nm),

where n and m are the lengths of the two sequences. Adding doublet scores

increases the complexity to O(nmL), where L is the distance over which

substitution correlations are scored. This efficient dynamic programming

alignment is possible because, although we are scoring correlations between

residues that are not directly aligned, these correlations are local along the

chain. The space complexity of our implementation is also O(nmL), which

could be improved using standard techniques (Durbin et al., 1998).

The additional similarity score associated with adding the final match pair

xi , yj to the alignment contains singlet (S) doublet (D) substitution scores;

S(i, j) = s(xi , yj ), (7)

D(i, j , r) =

r
∑

l=1

dl(xi−l , xi ; yj−l , yj ). (8)

Here, r is the length of the preceding contiguous segment of aligned residues,

or the maximum sequence separation over which doublet correlations are

scored, whichever is less. Deletions of length k are weighted with the affine

penalty −(gopen + (k − 1)gext), where gopen and gext are positive constants.

This standard affine gap length model is both computationally efficient and

surprisingly effective. (Smith and Waterman, 1981; Altschul and Erickson,

1986; Zachariah et al., 2005).

The optimal, highest scoring alignment between two sequences (x =

x1, x2, · · · , xn and y = y1, y2, · · · , ym) is found by populating a series of

score tables, also known as dynamic programming matrices. The entries

of the match table, M(i, j , r), are the maximum alignment score for an

alignment that terminates with an ungapped segment of length r , ending

at the i-th position of x and the j -th position of y. Similarly, the gap tables

Gx(i, j) and Gy(i, j) contain the maximum alignment similarity given that

the alignment ends with xi or yj gapped. The entries of these tables can

be efficiently computed starting from the following boundary conditions:

M(i, 0, l),M(0, j , l),Gx/y(i, 0),Gx/y(0, j) = −∞. A single aligned amino

acid pair may signal the beginning of a new local alignment, or it may occur

immediately after any alignment gap.

M(i, j , 1) = max











S(i, j)

S(i, j) + Gx(i − 1, j)

S(i, j) + Gy(i, j − 1)

(9)

In standard Smith–Waterman this is the only necessary match score table.

However, in doublet we require additional match tables so that we may

keep track of match scores over extended, contiguously aligned regions. Of

necessity, longer ungapped segments occur only after shorter segments. We

restrict the maximum distance L over which doublet correlations are scored,

since we expect that the useful information that can be extracted from doublet

correlations will decay rapidly with sequence separation (Fig. 3). Consequen-

tially, we do not need to explicitly consider ungapped segments of length

greater than L + 1.

M(i, j , 2 ≤ r ≤ L) = S(i, j) + D(i, j , r − 1)

+ M(i − 1, j − 1, r − 1). (10)

M(i, j ,L + 1) = S(i, j) + D(i, j ,L)

+max

{

M(i − 1, j − 1,L),

M(i − 1, j − 1,L + 1).

Gaps in the alignment are either preceded by a match or they extend an

existing gap.

Gx(i, j) = max
r=1,L

{

M(i − 1, j − 1, r) − gopen,

Gx(i − 1, j) − gext .

Gy(i, j) = max
r=1,L

{

M(i − 1, j − 1, r) − gopen,

Gy(i, j − 1) − gext .
(11)

The largest score within the match table marks the last aligned position

of the optimal alignment. The full alignment can be found by backtracking

through the table, according to the choices previouslymade during the scoring

step.

We used the method of Bailey and Gribskov (2002) to fit an extreme value

distribution to the results of aligning a query sequence against a database

of possible homologs. The maximum-likelihood parameters are then used to

assign E-values to each alignment.

2.3 Doublet BLOcks SUbstitution matrix

A doublet substitution matrix [Equation (5)] contains 204 = 160 000 entries,

of which 202 × (202 + 1)/2 = 80 200 are unique as a result of the under-

lying symmetry, dl(i, i
′; j , j ′) = dl(j , j

′; i, i′). To accurately estimate these

scoreswe require a very large collection of reliably aligned protein sequences.

The BLOCKS database is one such resource (Henikoff and Henikoff, 1992;

Henikoff et al., 2000). Each database block consists of a reasonably reliable,

ungapped multiple sequence alignment of a core protein region. BLOCKS

version 13+ contains 11 853 blocks, containing, on average, 56 segments

of average length 26 residues. Overall, about 109 pairwise amino acid

comparisons are available for study.
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     A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X 

 A   6 -1 -2 -2 -2 -1 -1  0 -2 -2 -2 -2  0 -2 -1  1  0 -3 -3  0 -2 -1 -1 

 R  -1  7  0 -1 -4  2  1 -3  0 -3 -3  3 -2 -3 -2 -1 -1 -2 -2 -3  0  1 -1 

 N  -2  0  8  2 -3  1  0  0  1 -3 -3  0 -2 -3 -1  1  0 -2 -2 -2  5  0 -1 

 D  -2 -1  2  9 -4  1  3 -1 -1 -4 -4  0 -3 -4 -1  0 -1 -3 -3 -3  6  2 -1 

 C  -2 -4 -3 -4 16 -4 -4 -4 -3 -3 -3 -4 -2 -2 -4 -2 -3 -3 -3 -2 -3 -4 -3 

 Q  -1  2  1  1 -4  6  3 -2  0 -3 -2  2 -1 -3 -1  0  0 -2 -2 -2  1  4  0 

 E  -1  1  0  3 -4  3  7 -3 -1 -3 -3  1 -2 -4  0 -1 -1 -3 -3 -3  2  5 -1 

 G   0 -3  0 -1 -4 -2 -3  9 -3 -5 -5 -2 -3 -4 -2  0 -2 -3 -4 -4 -1 -2 -2 

 H  -2  0  1 -1 -3  0 -1 -3 13 -4 -4  0 -3 -2 -2 -1 -2 -2  1 -3  0  0 -1 

 I  -2 -3 -3 -4 -3 -3 -3 -5 -4  6  3 -3  2  1 -3 -3 -1 -2 -2  4 -4 -3 -1 

 L  -2 -3 -3 -4 -3 -2 -3 -5 -4  3  6 -3  3  2 -3 -3 -2  0 -1  1 -4 -3 -1 

 K  -2  3  0  0 -4  2  1 -2  0 -3 -3  7 -2 -3 -1 -1 -1 -2 -2 -3  0  2 -1 

 M   0 -2 -2 -3 -2 -1 -2 -3 -3  2  3 -2  7  1 -3 -2 -1  0 -1  1 -3 -2 -1 

 F  -2 -3 -3 -4 -2 -3 -4 -4 -2  1  2 -3  1  9 -3 -3 -2  3  4  0 -3 -3 -1 

 P  -1 -2 -1 -1 -4 -1  0 -2 -2 -3 -3 -1 -3 -3 11  0 -1 -2 -3 -2 -1 -1 -1 

 S   1 -1  1  0 -2  0 -1  0 -1 -3 -3 -1 -2 -3  0  5  2 -2 -2 -2  0  0  0 

 T   0 -1  0 -1 -3  0 -1 -2 -2 -1 -2 -1 -1 -2 -1  2  6 -1 -2  0  0  0  0 

 W  -3 -2 -2 -3 -3 -2 -3 -3 -2 -2  0 -2  0  3 -2 -2 -1 16  4 -2 -3 -2 -1 

 Y  -3 -2 -2 -3 -3 -2 -3 -4  1 -2 -1 -2 -1  4 -3 -2 -2  4 11 -2 -2 -2 -1 

 V   0 -3 -2 -3 -2 -2 -3 -4 -3  4  1 -3  1  0 -2 -2  0 -2 -2  6 -3 -2 -1 

 B  -2  0  5  6 -3  1  2 -1  0 -4 -4  0 -3 -3 -1  0  0 -3 -2 -3  6  1 -1 

 Z  -1  1  0  2 -4  4  5 -2  0 -3 -3  2 -2 -3 -1  0  0 -2 -2 -2  1  5 -1 

 X  -1 -1 -1 -1 -3  0 -1 -2 -1 -1 -1 -1 -1 -1 -1  0  0 -1 -1 -1 -1 -1  0 

        1   2   3   4   5

   

AA AA   2   0   2   1   0  

AD AD   2   2   1   1   1

AD DA   4   3   3   3   2

DA DA   1   1   2   3   2

DD DD   0   3   3   3   2

CA AD   3   0   1   2   0  

CA AC   7   3   5   2   3 

CA AQ   3  -1   0   1  -1 

PI LF   1  -1   0  -1  -1

PI LP   5   4   3   2   0

PI LS   2   3   1   1   0

RA AA   0   1  -2  -2  -1

RA AR   2   1   2   2   2

RA AN   0  -1   0   1   1

PC CG  10   6   6  16   2

PC CL   8   4   4   8   3

PC CK  14   3   6  14  -5

PC CP  15   4   4  13   1

        1   2   3   4   5

   

CC CA  -3  -1  -9  -1   0   

CC CR   0   2  -4  -1   2   

CC CN  -1   0 -11  -3   1  

CC CD  -1  -1 -10  -3   0  

CC CC   2   0  -3  -1  -2  

CC CQ  -2   0  -4  -3   1   

CC CE   0   0  -7  -3   0   

CC CG  -3  -2  -9  -3  -1   

CC CH  -4  -1  -5  -2  -1   

CC CI  -1  -2 -13  -2  -2

CC CL  -3  -2 -10   1  -2  

CC CK  -1   3  -9  -1   3

CC CM  -2   0 -13   2  -1  

CC CF  -4  -2 -16   7  -2  

CC CP   0  -4 -12  -3  -1

CC CS  -2  -2 -10  -1   0   

CC CT  -1  -2 -10   1   1

CC CW  -4  -2 -11   2  -3

CC CY  -5   1  -2   6   0 

CC CV  -2  -4  -8  -2  -2 

        1   2   3   4   5

   

ET AA   0   0  -1  -1   0

ET AR   0  -1   1   1   1 

ET AN   1  -2   0   1   0   

ET AD   1   0   1   1   1  

ET AC   1   1   2   0   2   

ET AQ   1  -1   0   1   0  

ET AE   2   0   1   2   1   

ET AG   0   0  -1  -2  -1 

ET AH   0   0  -1   0   0 

ET AI   0  -1   0   0  -1  

ET AL   0   1  -1  -1   0 

ET AK  -1  -2   0   2   0 

ET AM   0  -1  -2  -1  -2 

ET AF   0   0   0  -1  -1   

ET AP   1   0   0   0   0

ET AS  -1  -1   0   0   1 

ET AT   0   1  -1  -1  -1 

ET AW  -1   0  -2  -1  -1 

ET AY  -1   0   0   1   1

ET AV   0  -1   0   1   0

BLOSUM65 (from BLOCKS 13+)

Singlet Substitutions Doublet Substitutions (Selected entries)
 L  L L

Fig. 2. BLOSUM65 singlet substitution matrix derived from the BLOCKS 13+ database (left) and selected elements of the corresponding doublet substitution

matrices (right). Scores are in 1/4 bit units, rounded to the nearest integer. The average standard statistical error is∼1/4 bits (i.e.∼1 unit) for the doublet scores

and essentially insignificant for the singlet scores, as judged by bootstrap resampling (See Section 2.3) The singlet scores are the log odds of observing the given

substitution; positive scores are more likely, and negative score less likely to be observed than would be expected for uncorrelated sequences [Equation (2)].

Similarly, the doublet scores represent the log odds for observing pairs of substitutions, at various sequence separations, relative to the singlet substitutions

likelihood [Equation (5)]. For example, the L = 3 column for ET AV (bottom right) indicates a score of zero for the alignment of ExxT in one sequence to

AxxV in the other.

The widely used canonical BLOcks SUbstitution Matrices (BLOSUM)

were generated from version 5 of the BLOCKS database (Henikoff and

Henikoff, 1992). In order to generate a series of matrices representing dif-

ferent evolutionary divergences, the sequences in each block are clustered at

a given level of sequence identity and the intercluster sequence correlations

are collected. Thus BLOSUM100 (where only 100% identical sequences

are clustered) represents a wide range, including low levels, of evolutionary

divergence, whereas BLOSUM30 represents only correlations between very

diverged sequences.

In principle, we should match the divergence inherent in the substitu-

tion matrix to the divergence of the pair of sequences we wish to align

(Bishop and Thompson, 1986; Thorne et al., 1991, 1992; Altschul, 1993).

However, this is computationally expensive, and, in practice, a single matrix

is chosen based on its ability to align remote homologs, on the grounds that

matching close homologs is relatively easy (Brenner, 1996, 1998; Crooks

and Brenner, 2005). In a recent evaluation of remote pairwise homology

detection efficacy (Green and Brenner, 2002; Zachariah et al., 2005), we

discovered that the BLOSUM65 substitution matrix, reparameterized from

the BLOCKS 13+ database, was more effective than any other reparamet-

erized BLOSUM (BLOCKS 13+), classic BLOSUM (BLOCKS 5) or PAM

(Dayhoff et al., 1978) substitution matrix, and was comparable to the most

effective VTML matrix (Müller et al., 2002). Consequentially, we have built

singlet and doublet substitution matrices from the BLOCKS 13+ database

at 65% clustering, using an adaptation of the original BLOSUM clustering

code (Henikoff and Henikoff, 1992). This provides∼107–108 independently

aligned doublets, depending on the sequence separation l.

The estimated doublet target frequencies ql(i, i
′; j , j ′), where smoothed

and regularized by adding a pseudocount α(i, i′; j , j ′) to the raw count data,

n(i, j ′; j , j ′). These pseudocounts are taken to be proportional to themarginal

singlet target probabilities, ql(i; j)ql(i
′, j ′).

ql(i, i
′; j , j ′) ≈

α(i, i′; j , j ′) + n(i, i′; j , j ′)

A + N
, (12)

α(i, i′; j , j ′) = A × q(i; j)q(i′; j ′), (13)

where,N is the total number of counts. Thus, if no data are available (the total

number of counts is zero, N = 0), then all doublet scores would be zero, as

can be seen from Equation (5). Here, A is a scale parameter that determines

how much data are required to overcome the prior probability inherent in the

pseudocount. Typically, such scale factors are picked empirically. However,

in this case, we performed a full Bayesian analysis and determined that for

doublet substitutions, reasonable values of A are ∼2 × 106, which can be

compared with the 107–108 actual observations. The full details are given in

the Supplementarymaterials. A representative subset of a doublet substitution

matrix is shown in Figure 2.

Standard statistical errors were estimated by non-parametric Bayesian

bootstrap resampling on sequence blocks (Efron, 1979; Rubin, 1981). Instead

of assigning equal weight to every sequence block, each block is instead given

a random weight drawn from a Dirichlet distribution. This random reweight-

ing induces random changes in the estimated scores, thereby providing an

estimate of the statistical errors caused by the finite size and inhomogeneity

of the training data.

2.4 Evaluation of remote homology detection

We have previously developed and applied a sensitive strategy for evaluation

of database search methods (Brenner et al., 1998; Green and Brenner, 2002;

Zachariah et al., 2005; Price et al., 2005). This strategy is made possible

by the availability of a large collection of protein sequences whose evolu-

tionary interrelations are known (primarily from structural information). In

our approach, each sequence is aligned against every other sequence, and

the alignment scores are used to determine putative homologs. We then

consider the proportion of correctly identified homologs as a function of

erroneous matches. Since the homology information derives from sequence-

independent data, we avoid the circularity inherent in other evaluation

approaches.

The collection of related sequences is derived from the structural clas-

sification of proteins (SCOP) database (Murzin et al., 1995). We use the

ASTRAL compendium (Chandonia et al., 2004) of representative subsets of

SCOP release 1.61 (Sept. 2002), filtered so that no two domains share more

than 40% sequence identity. We partition every other SCOP fold into separate

test and training subsets of approximately equal size, each containing ∼550

superfamilies, 2500 sequences, and 50 000 homologous sequence pairs. To

avoid overfitting, adjustable parameters are optimized using the training set.

Results of an all-versus-all comparison of the test set, using these optimized

parameters, are reported as a plot of coverage (fraction of true relations found)
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versus errors per query (EPQ), the total number of false relations divided by

the number of sequences (Fig. 4). The raw, unnormalized coverage is the

fraction of all true relations that are found.

Since the number of relations within a superfamily scales as the square

of the size of the superfamily, and because SCOP superfamilies vary greatly

in size, this reported coverage is dominated by the ability to detect rela-

tions within the largest superfamilies. To compensate for this unwarranted

dependence, we also report the average fraction of true relations per sequence

(linear normalization) and the average fraction of true relations per super-

family (quadratic normalization). In general, large superfamilies are more

diverse, and the relationships within them are harder to discover (Green and

Brenner, 2002). Thus, unnormalized coverage is typically less than the lin-

early normalized coverage, which in turn is less than quadratically normalized

coverage. One important point of comparison for search results is 0.01 EPQ

rate for linearly normalized results, the average fraction of true relations per

database query at a false positive rate of 1 in 100. We report the observed

difference in coverage of two methods at this selected EPQ, and determine

standard statistical errors and confidence intervals using Bayesian bootstrap

resampling (Rubin, 1981; Price et al., 2005).

3 RESULTS

3.1 Doublet substitution correlations

Various trends are evident within the doublet score matrix, as illus-

trated in Figure 2. Notably, exact conservations, such as AA↔AA,

AD↔AD and DD↔DD, generally have positive scores. This is

expected because the pairs of sequences used to build the BLOSUM

have a variety of intersequence similarity, ranging from most con-

served to very diverged. Thus the observation of a conserved residue

suggests that the sequences are relatively undiverged, and therefore,

that other aligned residues are also more likely than average to be

conserved.

Also notable is that many (but far from all) exact swaps, such as

DA↔AD, are significantlymore likely that expected. Possibly, this is

because the effect of a deleterious mutation X→Y can sometimes be

ameliorated by the occurrence of the corresponding mutation Y→X,

in the immediate sequence neighborhood. Partial swaps, where only

one of the substitution pair is conserved, are also often positive. This

might reflect alignment errors in the original dataset. Themost highly

positive scores (and therefore those events that are most overrepres-

ented in the data relative to uncorrelated substitutions) are associated

with the substitutions PC↔Cx, i.e. a translocation of a cystine,

replacing a proline. The most relatively uncommon substitutions

involve the mutation of one cystine in the cystine pair CxxC (second

column), a widespread and important motif found, for example, in

the thioredoxin family. However, these interesting particular cases

are atypical. Most of the doublet substitution matrix is similar to the

ET↔Ax substitutions displayed in the third column; the majority of

the scores are not significantly different from zero, indicating that

most possible substitution doublets are essentially uncorrelated.

We can place the above observations on a quantitative foot-

ing by considering the intersequence mutual information [Equa-

tion (6)], a measure of the correlation strength between aligned

homologous sequences. The first order contribution is equal to the

average singlet score, which is 0.31 bits per aligned residue for

BLOSUM65 (BLOCKS13+). The corresponding average doublet

score, the additional information encoded in intersite substitution

covariation, is∼0.04 bits at modest sequence separations (illustrated

in Fig. 3). Thus, the intersite substitution correlations carry relat-

ively little information. However, these correlations appear to persist

-0.02

0

0.02

0.04

0.06

1 2 3 4 5 6

L

Total Doublet Information

Conserved

Swap

Partial Swap

Partial Conservation

Unconserved

Fig. 3. The intersequence mutual information of homologs encoded in

intersite correlations at increasing separation, L, i.e. the average doublet sub-

stitution scores [Equation (6)]. The top, dark line is the total information at

various sequence separations. For comparison, the information encoded in

the corresponding singlet substitutions (the average singlet matrix score) is

0.31 bits per residue. The remaining lines illustrate the relative contributions

of different substitutions classes to this total information; these are exact con-

servation XY↔XY, partial conservation XY↔XZ, swaps XY↔YX, partial

swaps XY↔ZX and unconserved, double substitutions XY↔ZU.

to non-local neighbors, which suggests that the total information

from interactions at all sequence separations is substantial. How-

ever, Figure 3 also displays the contributions to this total information

from various categories of substitution. The largest contribution, and

the only contribution to persist above a sequence separation of four

residues, represents exactly conserved pairs of residues. This is a

rather trivial correlation which is persistent because all parts of two

homologous sequences have the same chronological divergence. All

other substitution classes, summing over all sequence separations,

contribute no more than 0.1 bits per residue. This is not entirely

insignificant, but it is still small compared with the singlet mutual

information. Thus non-trivial correlations between substitutions are

relatively weak.

3.2 Homology detection

The primary use for pairwise alignment methods is to search data-

bases of previously characterized biological sequences for homologs

of the sequence of interest. Therefore, the most powerful methods

will perform this task most effectively by assigning true homolog

significant statistical scores and assigning unrelated sequence low

statistical scores. Our assessment methodology compares database

search methods on this criteria.

We compared the doublet alignment algorithm against the

standard Smith–Waterman algorithm. To perform a fair test, we

converted raw scores to statistical scores for both algorithms using

the same length normalized maximum-likelihood EVD parameter

determination method (Bailey and Gribskov, 2002). Optimal para-

meters for gapping, matrix scaling and distance over which to

consider dipeptide correlations were found using the training data-

base described above. Then, the algorithms were evaluated by

comparing the relative ability to detect remote homologs within the

test dataset, using the parameters optimized on the training dataset.

(Inset, Fig. 4).
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L                0        1         2         3
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gext                               2         2         2         1
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Fig. 4. These coverage versus EPQ plots show that including dipeptide

covariation information in alignment determination (doublet) does not

improve remote homolog detection. (a) Optimized matrix, gap and look-

back parameters were used to search the test database with the doublet

and Smith–Waterman algorithms. This database contains no sequence pairs

that share>40% sequence identity. The number of correctly identified homo-

logs is shown as a function of the number of errors made. Smith–Waterman

outperforms doublet over all but extremely low error-rates. (b) Remote

homolog test using only sequence pairs with <30% sequence identity. As

above, Smith–Waterman correctly identifies more remote homologs than the

doublet algorithm. Inset: Optimal matrix scale parameter, gap parameters

and corresponding linearly normalized homology detection coverage at 0.01

EPQ, as a function of the covariation distance considered, L.

The results of a database search for Smith–Waterman and

doublet, using only nearest neighboring dipetide covariations,

are shown in Figrue 4a. Both the Smith–Waterman and doublet

methods performed remarkably similarly over all error rates and

normalization schemes. The linearly normalized coverage at 0.01

EPQwas slightly higher for Smith–Waterman thandoublet (Inset,

Fig. 4). From this, we conclude that including dipeptide covariation,

information does not improve remote homology detection and, in

fact, slightly degrades performance at this error rate. We also per-

formed the same coverage versus EPQ analysis using only sequences

with <30% sequence identity (Fig. 4b), as it was previously repor-

ted that dipeptide covariation information may be useful only for

detecting these extremely remote evolutionary relationships (Jung

and Lee, 2000). Our results, however, show that even at this evol-

utionary distance, dipeptide covariation scoring does not improve

homology detection.

We used Bayesian bootstrap resampling to estimate statistical

errors and to determine if the observed coverage difference was stat-

istically significant. We found that a 95% confidence interval for the

coverage difference at 0.01 EPQ comfortably contained zero differ-

ence. Therefore, we cannot distinguish between the remote homolog

detection abilities of Smith–Waterman and doublet.

We also evaluated the effect of including covariation information

over larger sequence separations. As can be seen in table of Figure 4,

incorporating this additional information into alignment scores

actually results in a slow degradation of homology detection efficacy.

4 DISCUSSION

Wehave developed, implemented and tested an alignment algorithm,

doublet, that generates the optimal pairwise protein sequence

alignment under a scoring scheme that includes dipeptide covari-

ation information. Perhaps surprisingly, and in marked contrast to

previous reports, we found that using this information provides

no benefit to remote homolog detection. The performance of the

doublet algorithm for detecting remote homologs is statistically

indistinguishable from the standard Smith–Waterman algorithm.

The underlying explanation for this indifference of alignment to

dipeptide covariation is that substitution correlations are weak on the

average (Figs 2 and 3). Therefore, the average effect of these interac-

tions is insignificant and including covariation in sequence alignment

makes very little material difference to remote homology detection.

We might reasonably question if the training data are at fault.

Indeed, the slight degradation of homology detection, as more dis-

tant correlations are included (Inset table, Fig. 4), does indicate that

the doublet substitution matrices contain anomalies, perhaps owing

to the training or alignment of the BLOCKS sequences, or perhaps

because of the different sampling of sequences included in BLOCKS

compared with those included in SCOP. The BLOCKS database that

we use to train the doublet substitution matrices contains ungapped

alignments, many of shorter length than the average SCOP protein

domain. Fukami-Kobayashi et al. (2002) showed that the covari-

ation signal is strongest within single secondary structure elements.

The poor performance of doublet, then, may be the result of its

applying the covariation model too bluntly across the entire pro-

tein sequences when it is only applicable within secondary structure

elements. However, we note that the BLOCKS database has been

used to derive very effective singlet substitution matrices (Green and

Brenner, 2002), and therefore, it is implausible that the substitution

signals within the BLOCKSdatabase are substantially erroneous. On

the contrary, the observed degradation simply reinforces the idea that

neighboring substitutions are weakly correlated, particularly when

compared with single substitution correlations, and therefore, the

doublet signal is readily degraded by minor anomalies in the data.

Another line of evidence comes fromexamining the intersite amino

acid correlation of single protein sequences (Yčas, 1958;Weiss et al.,

2000; Crooks and Brenner, 2004; Crooks et al., 2004). Neighboring

amino acids are almost entirely uncorrelated; the nearest neighbor

mutual information has been estimated as only 0.006 bits (Crooks

and Brenner, 2004). This lack of sequence correlation is consistent

with (but does not require) small intersite substitution correlations.
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It should be emphasized, however, that the observation of weak

average dipeptide covariation does not negate the possibility of

strong, interesting covariation in particular instances, such as

CP↔Cx, or within particular families. Moreover, it is conceiv-

able that covariation information could be used more judiciously,

thereby improving alignment results. For example, as previously

discussed, one might include doublet-type scoring information only

for residue pairs that are likely to be within the same secondary

structural element. Similarly, one might examine the covariation

of residues that are proximate in the tertiary structure, rather than

along the sequence (Rodionov and Johnson, 1994; Lin et al., 2003).

However, residues that are proximate in space are also only weakly

correlated (Cline et al., 2002; Crooks et al., 2004), and the inter-

residue mutual information is not improved by foreknowledge of

the local structure environment (Crooks and Brenner, 2004; Crooks

et al., 2004). Therefore, we suspect that such approaches will also

not have dramatic effects on protein sequence alignment.

In conclusion, the ubiquitous assumption that neighboring sites

along a protein sequence evolve independently appears to be gener-

ally appropriate. This leads to fast, elegant and effective algorithms

for protein sequence alignment and homology detection.
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A common problem is that of estimating a discrete probabil-

ity distribution, θ = {θ1, θ2, . . . , θk}, given a limited number of

samples drawn from that distribution, summarized by the count

vector n = {n1, n2, . . . , nk}, and a reasonable a priori best guess

for the distribution θ ≈ π = {π1, π2, . . . , πk}. (For a general in-

troduction, see Durbin et al. 1998.) This guess may simple be the

uniform probability, πi = 1/k, which amounts to asserting that,

as far as we know, all possible observations are equally likely. At

other times, we may know some some more detailed approxima-

tion to the distribution θ.

For example, in the present case we wish to estimate the prob-

abilities of substituting a pair of amino acid residues by another

residue pair, given the number of times that this substitution

has been observed in the training dataset. This probability is

hard to estimate reliably since the distribution is very large with

204 = 160, 000 dimensions. Moreover, many of the possible

observations occur very rarely. However, substitutions at differ-

ent sites are not strongly correlated, and therefore we may ap-

proximate the doublet substitution probabilities by a product of

single substitution probabilities. Since the dimensions of these

marginals are relatively small we can accurately estimate them

from the available data, and thereby construct a reliable and rea-

sonable initial guess for the full doublet substitution distribution.

In the common and conventional pseudocount approach, we

assume that the distribution π was estimated from A previous ob-

servations. These pseudocounts, αi = πiA, are then proportion-

ally averaged with the real observations (N =
∑

i
ni) to provide

an estimate of θ;

θi =
αi + ni

A + N
. (1)

This prescription is intuitively appealing. When the total num-

ber of real counts is much less than the number of pseudocounts

(N ≪ A) the prior dominates, and the estimated distribution is

determined by our initial guess, θ ≈ π. In the alternative limit

that the real observations greatly outnumber the pseudocounts

(N ≫ A) the estimated distribution is given by the frequencies

∗gec@compbio.berkeley.edu

θi = ni/N . However, it is not immediately obvious how to se-

lect A, although many heuristics have been proposed, including

A = 1, A = k (Laplace), and A =
√

N (e.g. Lawrence et al.,

1993; Durbin et al., 1998; Nemenman et al., 2001). Essentially,

this total pseudocount parameter represents our confidence that

the initial guess θ ≈ π is accurate, since the larger the total pseu-

docount the more data is required to overcome this assumption.

Within a Bayesian approach we can avoid this indeterminacy

by admitting that, a priori, we do not know how confidant we are

that π approximates θ. The probability P (n|θ) of independently

sampling a particular set of observations, n, given the underlying

sampling probability, θ, follows the multinomial distribution, the

multivariate generalization of the binomial distribution;

M(n|θ) =
1

M(n)

k∏
i=1

θni

i
, M(n) =

∏
i
ni!

(
∑

i
ni)!

. (2)

The prior probability of the sampling distribution P (θ) is typ-

ically modeled with a Dirichlet distribution,

D(θ|α) =
1

Z(α)

k∏
i=1

θ
(αi−1)
i

, Z(α) =

∏
i
Γ(αi)

Γ(A)
. (3)

where
∑

i
θ = 1, αi > 0 and A =

∑
i
αi. Note that the mean of

a Dirichlet is

E[θi] =
αi

A
. (4)

Therefore, we may fix the parameters of the Dirichlet prior by

equating our initial guess, π, with the mean prior distribution:

π = α/A. If we can fix the scale factor A, then we can combine

the prior and observations using Bayes’ theorem.

P (θ|n) =
P (n|θ)P (θ)

P (n)
. (5)

Because the multinomial and Dirichlet distributions are natu-

rally conjugate, the posterior distribution P (θ|n) is also Dirichlet.

P (θ|n) ∝ M(n|θ)D(θ|Aπ)

1



∝
k∏

i=1

θ
(Aπi+ni−1)
i

,

= D(θ|Aπ + n) (6)

The last line follows because the product in the previous line is an

unnormalized Dirichlet with parameters (Aπ + n), yet the prob-

ability P (θ|n) must be correctly normalized.

Given multinomial sampling and a Dirichlet prior, the prob-

ability of the data is given by the under-appreciated multivari-

ant negative hypergeometric distribution (Johnson & Kotz, 1969;

Durbin et al., 1998, Eq. 11.23);

P (n) =

∫
dθ P (n|θ)P (θ),

=

∫
dθ M(n|θ)D(θ|Aπ),

=
1

Z(Aπ)

1

M(n)

∫
dθ

20∏
i=1

θ
(Aπi+ni−1)
i

,

=
Z(Aπ + n)

Z(Aπ)M(n)
≡ H′(n|Aπ + n). (7)

Again, the last line follows because the product in the previ-

ous line is an unnormalized Dirichlet with parameters (Aπ + n).
Therefore, the integral over θ must be equal to the corresponding

Dirichlet normalization constant, Z(Aπ + n). Note that, con-

fusingly, the negative hypergeometric distribution is sometimes

called the inverse hypergeometric, an entirely different distribu-

tion, and vice versa.

Since we do know a reasonable value for the scale factor A
we cannot use a simple Dirichlet prior. As an alternative, we

explicitly acknowledge our uncertainly about A by building this

indeterminacy into the prior itself. Rather than a single Dirichlet,

we use the Dirichlet mixture;

P (θ|π) =

∫
∞

0

dA D(θ|Aπ)P (A). (8)

The distribution P (A) is a hyperprior, a prior distribution placed

upon a parameter of the Dirichlet prior. Following the same math-

ematics as Eqs. 5-7, we find that the posterior distribution is the

Dirichlet mixture

P (θ|n) =

∫
∞

0

dA D(θ|Aπ + n)P (A|n) , (9)

where

P (A|n) =
P (A)H′(n|Aπ + n)∫

∞

0
dA P (A)H′(n|Aπ + n)

. (10)

In principle, we have to select and parameterize a functional

form for the hyperprior, P (A). For example, an exponential dis-

tribution, P (A) = λ exp(−λA), with mean 1/λ, might be appro-

priate. Fortunately, we can often avoid selecting an explicit hy-

perprior. In practice, given sufficient data, the probability of that

data P (n|A) is a smooth, sharply peaked function of A. This is il-

lustrated in figure 1 using 107 observations of the 160,000 dimen-

sional doublet substitution probability, where the mean prior dis-

tribution is taken to be the product of singlet substitutions prob-

abilities. If the prior distribution of A is reasonable, and neither
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Figure 1: The likelihood of observations as a function of the scale

parameter A. With multinomial sampling and a Dirichlet prior

the likelihood of the data follows the negative hypergeometric

distribution, H ′(n|Aπ +n), where n is the count vector of obser-

vations, π is the mean prior estimate of the sampling distribution,

and A is a scale parameter (Eq. 7). Given a large number of ob-

servations (here, N =
∑

ni is about 107) the probability of the

data is a smooth and very sharply peaked function of the scale

parameter A.

very large nor very small over the range of interest, then the poste-

rior distribution P (A|n) will also be very strongly peaked. More-

over, the location of that peak will be almost totally independent

of the prior placed on A. In this limit the posterior Dirichlet mix-

ture (Eq. 9) reduces to the single component that maximizes the

probability of the data;

P (θ|n) ≈ D(θ|Aπ + n),

A = argmaxAP (A|n) ≈ argmaxAP (n|A),

P (n|A) = H′(n|Aπ + n). (11)

Here, argmaxxf(x) is the value of x that maximizes that function

f(x).
Given any function of θ, the average of the function across

the posterior distribution (the posterior mean estimate (PME) or

Bayes’ Estimate) minimizes the mean squared error of that esti-

mate. In particular, the posterior mean estimate of θ (Eq. 4) is

θPME
i =

Aπi + ni

A + N
. (12)

Taken altogether, our practice is to take the raw doublet sub-

stitution counts and construct a mean prior distribution π based

upon the approximation that substitutions on neighboring sites

are uncorrelated. We then find the scaling factor A that max-

imizes the negative hypergeometric probability H′(n|Aπ + n).
For our data the total number of observations N is around 107, for

which the optimal scale factor A was found to be about 106. The

posterior mean estimate of the doublet substitution distribution

is then used to construct the doublet substitution matrix. Code

for constructing doublet substitution matrices using this proce-

dure and for finding the optimal prior and posterior, given any set

of observations and π, a best guess for the true distribution θ, is

2



available from our web site (http://compbio.berkeley.

edu), along with other code and data for this work. Our programs

make extensive use of the Open Sourced GNU Scientific Library

(GSL) (Gough, 2003; Matsumoto & Nishimura, 1998).
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